
Math Level 1 SAT Practice Test 17

- 1. If $x = (b + 3)^2$ and b = -4, then x =
 - (A) -49
 - **(B)** −1
 - (C) 0
 - **(D)** 1
 - (E) 49
- 2. If f(x) = 4x 1 and 1 < x < 3, then which of the following defines all and only the possible values of f(x)?
 - (A) -3 < f(x) < 12
 - **(B)** 3 < f(x) < 11
 - (C) 3 < f(x) < 12
 - **(D)** 4 < f(x) < 11
 - **(E)** 5 < f(x) < 11
- 3. If $\frac{5}{k+4} = \frac{7}{k+6}$ then k =

 - (A) $\frac{24}{35}$ (B) $\frac{9}{13}$ (C) $\frac{2}{3}$

 - **(D)** 1
 - (E) 2

- 4. The average cost of 13 items in a display case is \$12. After one of the items is removed, the average cost of the remaining 12 items is \$11. The cost of the item removed is
 - (A) \$1.00
 - (B) \$11
 - (C) \$12
 - (D) \$13
 - (E) \$24

- 5. In the figure above, what is the value of x?
 - (A) 2.83
 - (B) 3.46
 - (C) 4
 - (D) 4.25
 - (E) 5
- **6.** If $\sqrt[5]{x-2} + .75 = 0$ then x =
 - (A) -2.24
 - **(B)** -1.44
 - (C) 1.76
 - (D) 1.85
 - (E) 2.56

- 7. What is the length of the line segment between the points (-2, -3) and (-4, 4)?
 - (A) 1.41
 - (B) 3.16
 - (C) 4.47
 - (D) 7.07
 - (E) 7.62
- 8. In Figure 1, if $RT = 2\frac{1}{4}$ then RS =

 - (B)
 - (C)
 - (**D**)
 - **(E)**

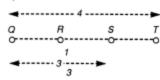


Figure 1

- 9. In Figure 2, which of the following points falls within the shaded area?
 - (A) (5,0)
 - (B) (5,1)
 - (C) (4,2)
 - (D) (4,3)
 - (E) (3,4)

Figure 2

- **10.** If 4 < x < 12 and 6 < y < 8, then which of the following must be true?
 - (A) $\frac{2}{3} < xy < \frac{3}{2}$ (B) 2 < xy < 4

 - (C) 6 < xy < 12
 - **(D)** 24 < xy < 96
 - **(E)** 32 < xy < 72
- 11. In Figure 3, three equilateral triangles have a common vertex. x + y + z =
 - (A) 270
 - (B) 180
 - (C) 120
 - (**D**) 90
 - (E) 60

Figure 3

- 12. If the operation ϕ is defined for all real numbers x and y by the equation $x \phi y = xy - y - x$, then $-2 \phi - 1 =$
 - (A) -3
 - (B) −2
 - (C) 1
 - (D) 3
 - (E) 5

- 13. In Figure 4, if the circle has a radius of 3, what is the length of minor arc PR?
 - (A) $\frac{\pi}{6}$
 - **(B)** $\frac{n}{3}$
 - (C) π
 - **(D)** $\frac{3\pi}{2}$
 - (E) 3π

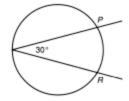
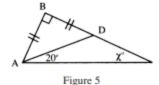


Figure 4

- **14.** What is the slope of the line perpendicular to the line whose equation is $x\sqrt{7} + y\sqrt{5} = 1$?
 - (A) 1.41
 - (B) 1.18
 - (C) .85
 - (D) .53
 - (E) .21
- 15. The number (73)³⁶ has how many digits when multiplied out?
 - (A) 12
 - (B) 36
 - (C) 37
 - (D) 67
 - (E) 68
- 16. What is the least positive integer x for which 12 - x and 15 - x will be non-zero and have opposite signs?
 - (A) 3
 - (B) 4
 - (C) 7
 - **(D)** 11
 - (E) 13


17. The solution set to the pair of equations:

mx + ny = 15

nx + my = 13

is x = 3 and y = 1. What are the values of m and n?

- (A) m = 5
- n = 3
- (B) m = 4n = 3
- (C) m = 3
- (C) m = 3n = 4
- (D) m = 3
 - n = 5
- (E) m = 2n = 6
- 18. The lengths of the sides of quadrilateral Q are all integers. If three of the sides have lengths of 3, 4, and 5, then the maximum length of the fourth side is
 - (A) 13
 - (B) 12
 - (C) 11
 - (D) 7
 - (E) 2
- In Figure 5, if ABD is a right isosceles triangle, then x =
 - (A) 25
 - **(B)** 30
 - (C) $37\frac{1}{2}$
 - (D) 45^{*}
 - (E) 60

1. D 2. B 3. D 4. E 5. B 6. C 7. D 8. D 9. E 10. D 11. B 12. E 13. C 14. C 15. E 16. E 17. B 18. C 19. A